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Theorem 3. As e-+0 the solution of the variational inequality (2.1) converges weakly 
the solution of the variational inequality (2.4). 

REFERENCES 

BIDERMAN V.L., Nechanics of Thin-Walled Structures. Mashinostroenie, Moscow, 1977. 
FICHERA G., Existence Theorems in the Theory of Elasticity /Russian translation/, Mir, 
MOSCOW, 1974. 
DESTDINER PH., Comparaison entre les modeles tridimensionnels et bidimensionnels de 
plaques en elasticit;, RAIRO Anal. Numer., V01.15, No.4, 1981. 
SEOIKNE'I B.A., On asymptotically exact equations of thin slabs of complex structure, PNM, 
Vo1.37, No.5, 1973. 

Translated by M.D.F. 

PMH U.S.S.R.,Vol.49,4,pp.468-474,1985 0021-8928185 $lo.OG+o.OC 
Printed in Great Britain Pergamon Journals Ltd. 

THE SUFFICIENT CONDITIONS FOR AN EXTREM~M IN PROBERS 
OF OPTIMIZING THE SHAPES OF ELASTIC PLATES * 

A.S. BRATDS' 

The problems of selecting the thickness distributions of elastic plates in 
order to maximize the fundamental free vibrations frequency, as well as 
to minimize the strain potential energy, are considered necessary and 
sufficient conditions are obtained for a weak local extremum in the such 
optimal design problems. These conditions retain their form even for 
reciprocal problems: minimization of plate weight when there are constraints 
on the fundamental frequency or the strain potential energy. The conditions 
obtained include an integral estimate on the maximum growth of second 
derivatives of the thickness distributions that satisfy the necessary 
extremum conditions. 

Problems on optimizing the shape of elastic plates have been solved 
numerically /l-8/. It has been proved /9/ that these problems cannot have 
a strong extemum. It is shown /lO,ll/ that for solutions to exists it is 
sufficient to improve integral constraints on the nature of the growth 
of the derivatives of the allowable thickness distributions. 

1, Formulation of the problem. Consider a plate of variable thickness h (2, Y) 
clampedalong a piecewise-smooth contour r bounding the domain D in the ry plane. Let S 
be the area of the domain D and V the volume of the plate. In the undeformed state the plate 
middlesurface coincides with the domain L). The plate is simply supported on the part r1 of 
theboundary r , and rigidly clamped on the remaining part r2. The function of plate 
deflectionsis denoted by X(X, y). We introduce the dimensionless variables 

2' = f‘Y', y' = ys-":, h' (x3 'y) = h (2, @f ST"' (1.1) 

The problem of the frequencies of free vibrations has the following form in the notation 
used (we omit the primes on the dimensionless variables): 

4 (!?! U: (I, y) = Xhw (2, y), )i = 12 (i - ~~)a??S~i’-~d (1.2) 

(ugr = 0 ($I=, = 0, p (AZ0 - + -&))r* = 0 (1.3) 

a= 
A(Ir)=~Irs(~+~~j+~haj~i_~~j+2(f--Y)~h3- i32.3y dr by Wf 

Here E is Young's modulus, v is Poisson's ratio, 0 is the frequency of free vibrations, 
aw:an is the derivative with respect to the external normal to r, R is the radius of 
curvature, and A is the Laplace operator. 

In the variables (1.1) the static bending problem of a plate loaded by a transverse force 
p(z y) has the form 

A (h) ic (r. y) = q (z, y), q = f2 (1 - vp) F'S-';*I'+p (I, y) (1.5) 

where the differential operator A (h)is given by (1.4), and the function TV' satisfies the 
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boundary conditions (1.3). 
We consider the Sobolev space W,"(D) (k =O, 1.2) of functions square-summable toOether 

with their derivatives to order k inclusive. Assuming that h (2,~) is a function continuous 

in B h(s, B)> h,> O(h, = const), we introduce a bilinear symmetric positive-definite f0rm /12/, 
generated by the operator A (h) 

Ah (IO, u) = 1 s ah (II,, u) dsdy, ah (u’, U)= h3 (U:y (U, -+ VUv,,) -t Wyy (uyy + ‘%c) -+ 2 (I- “) u?,,%y) WV 
D 

(the subscripts denote calcul.ation of the corresponding partial derivatives with respect to 
The formAh (IC. u)is defined and continuous in functions from the set H obtained 

cy c?%zh'in the space 1;,1(D)of the set of functions, infinitely differentiable in D and 

satisfying the boundary conditions (1.3). 
We shall consider weak solutions U-(X. Y)E H of the boundary value problems 11.21, (1.5) 

satisfying the integral identities 

Ah (u’, u) = A (hw. u), Ah (IC, u) = (q, II) (5.7) 

that are valid for any functions u (x. y) E H. Here and henceforth, the parentheses denote the 

scalar product in the space L,(D). Under the assumptions made, the theorem about the discrete 
spectrum is valid for the eigenvalue problem, as is the theorem on the existence of a solution 
of the boundary value problem if qE ff’. where H* is the space conjugate to the space H 112, 

13.I. 
We introduce additional assumptions on the nature of the possible plate thickness 

distributions. We let Q denote the set of functions h(r, y).satisfying the conditions 

c$ l~(r, Y) dx dy < 1, 0 <hr < 12(1, y) < hs (1.8) 

The last condition in (1.6) yields an integral constraint on the growth Of the second 
derivatives of the thickness distributions. Its necessity is dictated by the following reasons. 
Firstly, by virtue of the Sobolev embedding theorem /13/ it ensures continuity of the function 

h(Z, y), which is a natural requirement on the nature of the thickness distribution. Secondly, 
it is a sufficient condition for solutions of optimization problems formulated below to exist 
/lo-ll/. Thirdly, from the viewpoint of mechanics the hypothesis of a Kirchhoff-Loverectilinear 
normal element should be satisfied. The absence of this latter condition in (1.81 allows 
the appearance of a thickness distribution with arbitrarily large values of the Gaussian 
curvature; it is difficult here to expect any satisfactory compliance with the hypothesis 
mentioned. (It is shown by a passage to the limit in /14/ that the plate equations are 
asymptotically exact if the period of the thickness variation T is considerably greater than 
the thickness h itself, i.e., h.Te 1). 

Remark. Certain authors /E/ treat them as stiffness ribs in solving the optimization 
problem numerically without the last constraint in (1.8) , and obtaining arbitrarily large 
thickness distribution "peaks". However, the mathematical model of a plate with stiffness 
ribs /15/ does not correspond to the initial equations for which these solutions have been 
obtained, which makes such treatment unjustified. 

We will now formulate the optimai design probiems. 

10 . Among all thickness distributions h (.T. y) E Q it is required to find the distribution 
for which the minimum eigenvalue of the spectral problem (1.7) will be maximal, 

20. Among all distributions h (I, Y)E Qit is required to find that for which the magnitude 
of the strain potential energy in the boundary value problem (1.7) will be minimal. 

2. Calculation of the variations of the functionals. Let h (X.Y)E Q. We 
give the function h an increment in the form e&h (I. y). 

6h (I. Y) 
where E is a fairly small number, and 

is a function from iFz'(D). By virtue of the conditions (1.8) the function 612 is 
not arbitrary. However, at this stage we are interested in the dependence of the functionals 
of problems 1 and 2 on the increment bh without taking account of the constraints (1.8). We 
shall later turn to a complete formulation of the optimization pxoblems taking all the 
constraints into account. 

We will use the results Of an analytic perturbation of the spectrum of selfadjoint 
operators /16, 17/ by assuming that the first eigenvalue is prime. For h-b e6h the first 
eigenfunction u'~ and the first eigenvalue ?.I of problem (1.7) can be represented in the form 
of an asymptotic series in powers of a small parameter 
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Here qtL is a function of the space M‘22(D) bounded in the norm as E* 0. 
We substitute (2.1) into the first equation in (1.7) and we collect terms in identical 

powers of e. We obtain integral equalities for the functions u‘,, L'~, v,E& that are valid 
for any functions u E’H 

Bh (q, uf = 0, Bh (c,,u) = _-Bhl (U$, u) -j- 

Pl (hlL.1. u), B,, (lip. u) = -Bh’ (vl, u) - 

BA* @,r 4 + ~1 (hv,, u) + ~1 (wJA, u) + 

(B,, (LL’, u) = Ah (tr, u) - li, (hw, u)) 

Here &' (i = 1,2) are bilinear forms determined by the 
is defined in (1.6)) 

formula (the expression ah{=. u) 

(2.3) 

Let {lV,)&, {u~(r,y)$=~ be the remaining eigenvalues and eigenfunctions of problem (1.7) 
evaluated for h = h (r,yj. 
/12/: 

The eigenfunctions can be normalized (6ij is the Kronecker delta) 

("i/Z, Uj) = 6Q, A,, (IP,. to,) = ]G 6 2 2, (2.4) 

We set u = u‘, in the second equation in (2.2) and we take account of the first equation 
and (2.4); then 

p1 (h. 6hj = Bh’ (cl, is,) (2.5) 

We find an expression for the function L:~ in (2.1) by giving the first correction in E 
to the eigenfunction u‘l. The system of eigenfunctions {ui}t"=, is complete in H /12/, 
consequently, the following representation holds: 

We substitute the function 1'1 into the second equation in (2.2) and we successively 
set u = wi(i = ZY,...). and we obtain an expression for the coefficients of the series (2.6) 

98 = - (h, - iJIBh’ (u.~. w,), s = 2, 3, . . . 

The constant g1 is determined from the normalization condition (2.41 and is not essential 
for further computations. 

We set 11 = rc,~ H in the third equation in (2.2) and use the expression for the coefficients 
of the expansion (2.6) and condition (2.4). We have 

We now consider the boundary value problem (1.7). For h $ EM, its solution can be 

represented in the form of a series in eigenvalues of the spectral problem (1.7). Consequently, 
the following representation holds: 

X(1. Kj - EZL (z. y: 6)ii 1 El'Zz (I. y; 611) - && (f. y: 6h) 

where u’(I, y) is the solution of problem (1.7) for il = h (z. y). We substitute this expansion 
into (1.7). We obtain integral equalities for the functions ZL1, z,, Z,E H (Ah' = Bh' for P.,=O: 

the forms &,* (i= 1.2) are defined in (2.3)) 

Ah (w. u) = (q+ IA), Ah (z,, u) + AhI (IL; u) = 0 (23) 

Ah (.?& U) -j- Ah’ (zl. u) -I- Ah* (u’, u) = 0 vu E H 

The functional of the problem, the strain potential energy, is given by the formula 

c (h) = (g, w) = (A (h) LL', LL') (2.9) 

consequently, the first correction in E to the value ofthe functional (2.9) equals (PI hit. 
Setting II = LCin the second equation Of (2.S), we have Ah(Z1, w) = Ah(U’, Z1)= (q,Z,)= --Ah’ 

(w, U’)from the first equality in (2.8). Hence 

6C (h) = -A,,’ (le, u.) (2.10) 



471 

To calculate the second Correction in E we set u = WE H in the third equation in 

(2.8)) then A,,@*, u,) =-Ahl(zl, IL')- Ahl(u, u'). Now setting u = zl= H in the second equation 

in (2.8) , we have Ah1 (w, ZJ = A,,’ (zI, IL’) = -Ah (21, 21). In sum, we obtain an expression for the 

second variation of the functional (2.9) 

6*U fh) = (z,, q) = Ah (zl. W) = Ah (q, ZJ - A,,* (UT, w) (2.11) 

Remark. The formulas obtained for the variations of the functionals are weak functional 
derivatives according to Gateaux, Later the property of strong Frbchet differentiability of 
the functionals is utilized. As a rule, these derivatives are in agreement for traditional 
calculus of variations problems. For the case of the strain potential energy functional, the 
agreement between these derivatives follows from the results in /lo, ll/. For the functional 
of the prime eigenvalue the proof of agreement between the weak and strong derivatives is 
based on the property of the continuous dependence of the eigenfunctions and eigenvalues on the 
elements Aa@ 

3. Necessary conditions for an extremum. We introduce the functions o2 (s, Y) = 

h, - h (3, y), 7’ (z? v) = h (I, y) - h, by considering a and T as new controls in problems lo and 
2O of Sec. 1. 

We consider first the case of the spectral problem (1.7). We form the expanded Lagrange 
functional 

L(h,a,r)= - ?.1 (11) i y., (12. 1) -L x: (8%. B'ir) -!- 

\I ‘h (x. y)V (I. y) - h - ~~ (I. y)l dxdy 7 \s 0: (I, y)fh - h (2, y) - u* (x. y)) dxdy 

x1. x2 = canst > 0. 9,. e2 are elements from the space 1im2-? iD)conjugate to the space Wt'(D)/13/ 
(the expression (a%)? is defined in (1.8)). The necessary conditions for the extremum are 
satisfaction of the conditions /18/ 

Here ShL.d,L,6,L are the firnt variations of the functional 
controls h, a. T. 

Taking account of (2.51, we obtain from (3.2) 

e1 (J. y) T (2. y) = 0. 02 (s. y) a (I. y) = il 

(3.2) 

(3.3) 

(3.11) with respect to the 

(3.4) 

Here and hentieforth, the %bscripts denote evaluation of the corresponding partial 
derivatives. 

Suppcse U (r. ?J)# 0 and T ir. y)# 0. then 8, (1. y) = Hz (J. y) = 0. i.e. k, < h (J, y) < 11,. 
We will denote the set of such points (.r,y) 5 D by D,. 

Let a (J. y)# 0 and T (I. y) = 0 ; then El, (I. y) = 0 and h (2, y) = 17,. 
If u (I, y) = 0. and 'T fz. y)+ 0. then 8, (J. y) = 0 an3 h (I, y) = 12,. 
We dencte the set of such points @.y)E D by D,,, and D,,,, , respectively. 
The case when a (-2.y)= T(Z.SJ) = 0 is impossible since h, (1):. 

(/19i', 
We apply Green's formula 

p. 109) (l-0 is the boundary of the domain 0,) 

(is.4 is the biharmonic operator). Let the conditions 

(ll;)rr = o (i- sljr, = 0 (3.5) 

be satisfied, which corresponds to smooth emergence of the thickness distribution his. y} and 
the upper and lower constraints h, and h,. Taking account of (3.31, (3.5) and formula 
(2.5) I we write the necessary condition in the form (b;'=a,,* 
is defined in (1.6)) 

- i.,qz. ah1 = dah,dh, the form ah 

Together with conditions (3.51, Eq.cj.6) is a boundary value problem in the function 
?I(J.Y) whose solution should br? understood in the weak sense, i.e., as the inregral identity 
(3.4) which holds for a::y functlonc Oh s It','(D). 
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The non-positivity of the elements O1(z.g)and 0,(x, y) from w, ‘l*(D) results from a second- 
order necessary condition requiring the non-negativity of the second variations of the 
functional 13.1) with respect to D and + /IS/. Then conditions f3.61 can be written in the 
form 

bhl + x1 > 0, (r, y) E l&i,. h = h, (3.7) 

bhl + x1 < 0, (2, Y) E D,,,, h = h, 

bhl i- x1 - 2x,& = 0, (t, y) E R. h, < h (I, y) < k, 

bhl f% LL.,) = Oh’ (WI, WI) - h,q2 

where the function h satisfies conditions (3.5) on the boundary of the domain Do. 
Analogous conditions can also be written in the case of the problem for minimum potential 

energy. They have the form (3.7) when bh3(c1, w,) is replaced by ahl(ul, wl). 

Remark. Conditions (3.7) are obtained under assumptions on the regularity of the extremal 
ptoblem formulated /18/. If the regularity condition is not satisfied, then either y.,= y.: =O 
or X, = 0 and h (I, y) = const. 

4. Sufficient conditions for an extremum, We formulate the main result. 

Theorem 1. For h = h(z, y)E Q Let the necessary conditions for an extremum (3.71, (3.3) 
be satisfied in the problem of maximizing the first eigenfrequency, where the first two 
inequalities in (3.7) are satisfied as strict inequalities. Then the function h(s. y) achieves 
a weak local maximum of the problem if the constant C in the integral constraint (1.8) satisfies 
the estimate C* ( h,* (1~~ - h,j.?y in the class of variations satisfying the condition (d%h. a%?)< 
oz. where '] is a constant dependent only on the geometry of the domain D. 

Proof. The sufficient conditions for a weak local maximum /18/ are the positive-definite- 
ness of the second variations ofthe functional (3.1) in the variations bh for which the 
following is satisfied (the expressions (b'%, d’bh) axe defined in (3.4) ) 

(bh. 1) = 0, (Ph, ir%ic) = 0, (0, - fl,, 6X = 0 (4.1, 

From the positive-definiteness of the second variations in o and 5 we have % (3, yi > 0, 
es (I, 8) > (1. Consequently, the inequalities (3.7) are satisfied as strict inequalities in the 
optimal solution h i--> ~1 and it follows from (3.4) that hjz,y)= h, on L&,, and h(z,y) = h2 in 
13 the second rn31‘ Therefore, it is sufficient to confirm the positive-definiteness of 
variation in h just in the variations bhOE W-z(D) which vanish in the set Dnzin i D,,,. It 
hence follows /13/ that 6h, = (V,,), = (Ml,), = 0 on the boundary of the domains L), and Dminq R,,,. 
We use (2.7) by noting that the second terr in (2.7), taken with a minus sign, will be non- 
negative since i.; > i.>, E = 1. 3, . . . We have 

that 
i., 

bh 

The following estimate holds (later the maxiT& is taken in the domain D,,u,,l= d2a,,.dh2) 

Bhl (I&,. “,,I = (ah2 (IL,. IL,). Ch,?: < n,a\ / bit;, /: 1s ah* (IL‘,. Ul)i dr dy < (4.3) 
D 

Here the inequality I~.i~,2,i is used, as are also the relationship na (u,. w,) h+= 5hzi%, &I C 
results fror, the defir,itio:. of the forms oh anr? ah* in (1.6), and the equality A~,('L.,,w~)I- 
follows from (1.7). 
From the Sobolev embedzing theorem /13/, the estimate (,,6h,,p is the norm of the element 

in the space M'? CD)) 

follows with a fixed constant r, dependent only on the geometry of the domain L),. 
Using the Friedrlchs and Foincarg inequalities /12/ and conditions (4.11, it can be 

proved that the following estimate holds 

max 1 bho 1) Q y is (d’bh.# dr dy. p=oonst>O 
D 

By using the last inequality we have from (4.2) and (4.3) 

&,*LL (xz- 3yh;%l) 51 @%h# d= du 
D 

For this axpressiontobe positive-definite we must have 

XI> +'A-' (4.4) 
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From (4.4) we obtain the upper bound for values of the constant C in the constraints 
(1.8). For this we integrate the last equation in (3.7) over the domain DO, taking (3.5) 

into account. We have (S, is the measure of the set DO) 

S,,=Q bf +I, 4 d+ dv 

We multiply (3.7) by h and integrate it over the domain D, taking (3.5) into account. 

We obtain 

If Xl> 0% it then 

On the other hand, 

2x1 

follows from (3.3) that 

i! 
(8*/l)* dz dv = C’ 

the inequality h/h,<1 holds, and consequently 

Xl&>h;'SS hb,,'(wl,ml)dz d# 

D. 

(4.5) 

(4.6) 

We have from (4.5), (4.6), and the estimate (4.4) 

hs= C'< - 
' 61'11 

We obtain from the definition of the form b$(q,q) in (3.7) 

We use the equalities (1.6) and (2.3) defining the forms ah and +,I. Then hok (u]. w,) = 

3”h (w,, wl) and 

1s hb,,’ (a, WI) dl dv 5 3 SC ah 0% ~1) dl dv = 311 
6 a 

Finally, we use the estimate 

Finally, we have the estimate 

Theorem 2. For 11 (2, y) E 0 in 

mentioned in Theorem 1. 

the problem of minimizing the functional (2.9), let the 
necessary conditions for an extremum (3.7), (3.3) be satisfied with - bhl(~.~, wl) = a,,'(~.,. u.~). 
The inequalities in (3.7) are here satisfied as strict inequalities. Then the function h (r, Y) 
achieves a weak local minimum for the problem formulated if the constant C in the constraints 
(1.8) satisfies the estimate presented in the conditions of Theorem 1. 

The proof of Theorem 2 is analogous to the proof of Theorem 1. 
The results obtained ensure the existence of a weak extremum in the problems considered 

if the constant C in (1.8) is sufficiently small, i.e., if the curvature of the surface I1 = 

h(r> Y) changes sufficiently smoothly. They enable us to explain the discrepancy in the 
optimization process for large ratios bz'A, /0/. In this case, the condition imposed in 
Theorems 1 and 2 on the maximal growth of the derivatives of the thickness distribution that 
satisfy the necessary condition for an extremlxn may be violated, and it is impossible to 
guarantee an optimum at stationary points. 

REFERENCES 

1. BANICHUK N.V., KARTVELISHVILI V.M. and MIRONOV A.A., Numerical solution of two-dimensional 
elastic plate optimization problems, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, 1, 
1977. 

2. BANICHUK N.V., KARTVELISHVILI V.M. and MIRONOV A.A., Optimization problems with local 
quality criteria in plate bending theory, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, 
1, 197S. 

3. HAUG E., Optimal design of elastic structures for maximum stiffness. Intern. J. Solids 
and Structures, 4, 7, 1966. 

4. GURA N.M. and SEIRANYAN A.P., Optimization of a circular plate when there are constraints 
on the stiffness and the frequency of natural vibrations, Izv. Akad. Nauk SSSR, Mekhan. 
Tverd. Tela, 1, 1977. 

5. PRAGER W., Principles of the Theory of Optimal Design of Structures /Russian translation/, 
Mir, Moscow, 1977. 

6. BANICHUK N.V., Optimization of the Shapes of Elastic Bodies. Nauka, Moscow, 1980. 



474 

7. TROITSKII V.A. and PETUKHOV L.V., Optimization of Shapes of Elastic Bodies. Nauka, 
Moscow, 1982. 

8. OLHOFF N., Optimal Design of Structures /Russian translation/ Mir, Moscow, 1981. 
9. LUR'E LA, and CHERKAEV A.V., On application of the Prager theorem to the problem of 

optimal thin plate design, Izv. Akad. Nauk SSSR, Hekhan. Tverd Tela, 6, 1976. 
10. LITVINOV V.G., Optimal control problem for the natural frequency of a plate of variable 

thickness, Zh. Vychisl. Mat. Matem. Fiz., 19, 4, 1979. 
11. LI'IVINOV V.G., Optimal control of the coefficients in elliptic systems, Differents. 

Uravneniia, 6, 1982. 
1.2. MIKHLIN S.G., Variational Methods in Mathematical Physics, Nauka, Moscow, 1970. 
13. ~OROVICH L.V. and AKILOV G.P., Functional Analysis, Nauka, Moscow, 1977. 
14. KOHN R.V. and VOGELIUS M., A new model for thin plates with rapidly varying thickness, 

I. Proc. Univ. Maryland, 988, August, 1982. 
15. SAMSONOV A.M., Optimal location of a thin elastic rib on an elastic plate, Izv. Akad. 

Nauk SSSR, Mekhan. Tverd. Tela, 1, 1978. 
16. COURANT R. and HILBERT D., t4ethods of Mathematical Physics, Vol.1 /Russian translation/, 

Gostekhteorizdat, Moscow-Leningrad, 1933. 
17. REISZ F. and SZEKEFALVY-NAGY B., Lectures on Functional Analysis /Russian translation/, 

Mir, Moscow, 1979. 
18. ALEKSEYEVV.M., TIKHOMIR0VV.M. and FOMIN S.V., Optimal Control, Nauka, Moscow, 1979. 
19. TIMOSHENKO S.P. and WOINOWSKI-KRIEGER S., Plates and Shells /Russian translation/, 

Fizmatgiz, Moscow, 1963. 

Translated by M.D.F. 

Pm U.S.S.R.,Vo1.49,No.4,pp.474-482,1985 0021-8928/85 $lO.OO+O.oO 
Printed in Great Britain Pergamon Journals Ltd. 

STOCHASTIC BIFURCATION IN THE THEORY OF THE FLEXURE OF 
SPHERICAL SHELLS AND CIRCU~R M~~RANES* 

S.I. VOLKOV 

The capacity of rigidly clamped elastic membranes and open shallow 
sphericai shells of circular outline that are in equilibrium under the 
action of a radial stress, given uniformiy on the contour, and transverse 
loads distributed radially along the surface to form a field‘with a quasi- 
Gaussian probability measure to retain shape is investigated. It is 
assuned that the behaviour of the membranes and shells is described by 
vcn Karnan equations taken in a radial approximation. 

The foilowing method /l/ is used. A generaiizaticn of the probability 
density, a probability functional (PF) induced by the probability measure 
of the ioad and the operator of the problem is ccnstructedinthe space of 
possible SC~,~ ';*ions of the initial boundary value problem (the concept of 
probability density inthe functional space of individual realizations of 
a random field of the desired parameters was first utilized in statistical 
hydromechar,ics problems /2/l. Tne times of a substantial change in the, 
shape or an abrupt decrease in the shei? (and membrance: carrying capacity 
are related to the first bifurcation of the PF modes with respect to the 
growth of the compressive force. 

The application of this method starts with the derivation of the 
equations for the PFextremals inthe apace of weighted derivatives of the 
deflection function with respect to the dimensionless variable radius. 
Within the framework of the Galerkin method, solutions of the designated 
equation are determined. Simple relationships are determined that relate 
the radial stresses to the statistical characteristics of the transverse 
load field at the time of bifurcation of these solutions. It is shown 
that up to the time of the first bifurcation of PF has just one extremal, 
a trivial mode for the membranes but a non-trivial mode for the shells. 
Then by starting with the time mentioned the membrane PF reaches maxima 
on the extremals bifurcating from the trivial, while the shell PF acquires 
a new maximum (in addition to the existing maximum) on still another 
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